Respuesta :

Answer:

[tex]\frac{1}{w^{36}}[/tex]

Step-by-step explanation:

Given:

[tex](\frac{w^8}{w^2})^{-6}[/tex]

We need to Simplify the equation;

To Simplify the equation we will use Law of indices.

[tex]\frac{x^a}{x^b}=x^{a-b}[/tex]

[tex]\frac{w^8}{w^2} = w^{8-2}= w^6[/tex]

Now we get;

[tex](w^6)^{-6}[/tex]

Now Simplifying equation we will use Law of indices we get;

[tex](x^a)^b=x^{a\times b}[/tex]

[tex](w^6)^{-6} =w^{6\times -6} = w^{-36}[/tex]

Also again Law of Indices states;

[tex]x^{-a}= \frac{1}{x^a}[/tex]

[tex]w^{-36}= \frac{1}{w^{36}}[/tex]

Hence the Final Answer is [tex]\frac{1}{w^{36}}[/tex]