contestada

Complete the statements to verify that the triangles are similar.


StartFraction Q R Over T U EndFraction = A.1/4 B.1/2 C.2 D.4


StartFraction P R Over S U EndFraction = A.1/2 B.2 C.4 D.6


StartFraction P Q Over S T EndFraction = StartFraction StartRoot 52 EndRoot Over StartRoot 13 EndRoot EndFraction = A.1/2 B.2 C.4 D.6


Therefore, △PQR ~ △STU by_________ the theorem. A.SAS congruency B.SAS similarity C.SSS congruency D.SSS similarity

Complete the statements to verify that the triangles are similar StartFraction Q R Over T U EndFraction A14 B12 C2 D4 StartFraction P R Over S U EndFraction A12 class=

Respuesta :

Answer:

.2

.2

.2

.SSS similarity

Step-by-step explanation:

just did the assignment :)

for the first two, you count the units between QR and units between TU and substitute the numbers for QR and TU to divide and find 2. Do the same but with PR and SU for the second one.

Answer:

1. Option C

2. Option B

3. Option B

4. Option D

Step-by-step explanation:

From the given graph it is clear that  

PR = 6 units

QR = 4 units

TU = 2 units

SU = 3 units

Now,

[tex]\dfrac{QR}{TU}=\dfrac{4}{2}=2[/tex]  

Hence, the correct option is C.

[tex]\dfrac{PR}{SU}=\dfrac{6}{3}=2[/tex]

Hence, the correct option is B.

Using given information, we get

[tex]\dfrac{PQ}{ST}=\dfrac{\sqrt{52}}{\sqrt{13}}=\dfrac{\sqrt{4\times 13}}{\sqrt{13}}=\dfrac{2\sqrt{13}}{\sqrt{13}}=2[/tex]  

Hence, the correct option is B.

We conclude that all corresponding sides are proportional.

[tex]\dfrac{QR}{TU}=\dfrac{PR}{SU}=\dfrac{PQ}{ST}=2[/tex]

[tex]\therefore \Delta PQR\sim \Delta STU[/tex]      (Using SSS similarity)

Hence, the correct option is D.