Answer:
361.46 N
Explanation:
[tex]\alpha[/tex] = Coefficient of thermal expansion = [tex]11\times 10^{-6}\ /^{\circ}C[/tex]
Y = Young's modulus for steel = [tex]20\times 10^{10}\ Pa[/tex]
A = Area = [tex]3.1\times 10^{-6}\ m^2[/tex]
[tex]L_0[/tex] = Original length = 1.28 km
[tex]\Delta T[/tex] = Change in temperature = [tex]45-(-10)[/tex]
Length contraction is given by
[tex]\Delta L=\alpha L_0\Delta T[/tex]
Also,
[tex]\Delta L=\dfrac{L_0T}{YA}[/tex]
[tex]\alpha L_0\Delta T=\dfrac{L_0T}{YA}\\\Rightarrow T=\alpha \Delta TYA\\\Rightarrow T=11\times 10^{-6}\times (43-(-10))\times 20\times 10^{10} \times 3.1\times 10^{-6}\\\Rightarrow T=361.46\ N[/tex]
The tension in the wire is 361.46 N