Please help as fast as you can.

Answer:
[tex]cos\theta[/tex]=[tex]\sqrt{\frac{85}{121}}[/tex]
[tex]tan\theta[/tex]=[tex]\frac{6}{\sqrt{85}}[/tex]
Step-by-step explanation:
given, [tex]sin\theta[/tex]=[tex]\frac{6}{11}[/tex]
since, [tex]sin^2\theta[/tex]+[tex]cos^2\theta[/tex]=1
[tex]cos^2\theta[/tex]=1-[tex]sin^2theta[/tex]
[tex]cos^2\theta[/tax]=1-[tex]\frac{36}{121}[/tex]
=[tex]\frac{121-36}{121}[/tex]
=[tex]\frac{85}{121}[/tex]
[tex]cos\theta[/tex]=[tex]\sqrt{\frac{85}{121}}[/tex] answer
[tex]tan\theta[/tex]=[tex]\frac{sin\theta}{cos\theta}[/tex]
[tex]tan\theta[/tex]=[tex]\frac{6}{\sqrt{85}}[/tex] answer