Respuesta :

Answer:

Solutions are (6,3) and (-2,3).

Step-by-step explanation:

From the first equation given we can write:

[tex](x-2)^{2} = 16-(y-3)^{2}\\[/tex]  

substituting for [tex](x-2)^{2}[/tex] in the second equation given we get

[tex]\frac{16-(y-3)^{2}}{16} + \frac{(y-3)^{2}}{64} = 1[/tex]

[tex]\frac{-(y-3)^{2}}{16} + \frac{(y-3)^{2}}{64} =0[/tex]

∴ y=3

Putting y=3 in the first equation we get

[tex](x-2)^{2} = 16[/tex]

x-2 = ±4

Hence x=6 or x=-2.

Otras preguntas