Answer:
835.2267 Hz
Explanation:
M = Molar mass
[tex]\gamma[/tex] = Specific heat ratio
L = Length of tube
For open ends the frequency is
[tex]f=\dfrac{v}{2L}[/tex]
For closed ends the frequency is
[tex]f=\dfrac{v}{4L}[/tex]
So, [tex]f\propto v[/tex]
Speed of sound is given by
[tex]v=\sqrt{\dfrac{\gamma RT}{M}}\[/tex]
So, [tex]v\propto \sqrt{\dfrac{\gamma}{M}}[/tex]
From the above relations we get
[tex]\dfrac{f_h}{f_a}=\sqrt{\dfrac{\gamma_hM_a}{\gamma_aM_h}}\\\Rightarrow \dfrac{f_h}{f_a}=\sqrt{\dfrac{1.67\times 28.8}{1.4\times 4}}\\\Rightarrow \dfrac{f_h}{f_a}=2.93062[/tex]
[tex]f_h=f_a2.93062\\\Rightarrow f_h=285\times 2.93062\\\Rightarrow f_h=835.2267\ Hz[/tex]
The frequency of helium is 835.2267 Hz
It does not matter if the tube is closed or open as [tex]f\propto v[/tex]