Respuesta :
Answer:
Statement 1,3 and 4 are true.
Step-by-step explanation:
Given : The system of equations [tex]2x-8y=0[/tex] and [tex]-2x+4y=-8[/tex]
To find : Which statements are true? Check all that apply.
Solution :
Equation 1 - [tex]2x-8y=0[/tex]
Equation 2 - [tex]-2x+4y=-8[/tex]
Solving equations,
Add equation (1) and (2),
Step 1 - [tex]2x-8y+(-2x+4y)=0+(-8)[/tex]
Step 2 - [tex]2x-8y-2x+4y=0-8[/tex]
Step 3 - [tex]-4y=-8[/tex]
Step 4 - [tex]y=2[/tex]
Step 5 - Substitute in equation (1),
[tex]2x-8(2)=0[/tex]
[tex]2x=16[/tex]
[tex]x=8[/tex]
Step 6 - The solution to the system is (8,2).
Statement 1 - The x-variable will cancel when adding the system of equations.
It is true shown in step 2.
Statement 2 - After adding the system of equations, you get - 12y = -8.
It is false shown in step 3.
Statement 3 - y=2
It is true shown in step 4.
Statement 4 - x=8
It is true shown in step 5.
Statement 5 - The solution to the system is (2,8).
It is false shown in step 6.
Answer:
A.The x- variable will cancel when adding the system of equations
C.y=2
D.x=8
Step-by-step explanation:
We are given that system of equations
[tex]2x-8y=0[/tex]
[tex]-2x+4y=-8[/tex]
We have to find the true statements.
Adding two equations then, we get
[tex]-4y=-8[/tex]
[tex]y=\frac{-8}{-4}=2[/tex]
Using division property of equality
Substitute y=2 in equation first
[tex]2x-8(2)=0[/tex]
[tex]2x-16=0[/tex]
[tex]2x=16[/tex]
[tex]x=\frac{16}{2}=8[/tex]
Hence, the solution of the system is (8,2).
Option A,C and D are true.