A long, thin solenoid has 450 turns per meter and a radius of 1.06 . The current in the solenoid is increasing at a uniform rate di/dt. The magnitude of the induced electric field at a point which is near the center of the solenoid and a distance of 3.49 from its axis is 8.50×10-6 V/m. Calculate di/dt

Respuesta :

Answer:9.34 A/s

Explanation:

Given

radius of solenoid [tex]R=1.06 m[/tex]

Emf induced [tex]E=8.50\times 10^{-6} V/m[/tex]

no of turns per meter n=450

we know Induced EMF is given by

[tex]\int Edl=-\frac{\mathrm{d} \phi}{\mathrm{d} t}=-\frac{\mathrm{d} B}{\mathrm{d} t}A[/tex]

Magnetic Field is given by

[tex]B=\mu _0ni[/tex]

thus [tex]\frac{\mathrm{d} B}{\mathrm{d} t}=-\mu _0n\frac{\mathrm{d} i}{\mathrm{d} t}[/tex]

Area of cross-section

[tex]A=\pi R^2[/tex] where

solving integration we get

[tex]E.\cdot 2\pi r=\mu _0n\frac{\mathrm{d} i}{\mathrm{d} t}\pi R^2[/tex]

where r=distance from axis

R=radius of Solenoid

[tex]\frac{\mathrm{d} i}{\mathrm{d} t}=\frac{Er}{\mu _0nR^2}[/tex]

[tex]\frac{\mathrm{d} i}{\mathrm{d} t}=\frac{8.50\times 10^{-6}\times 3.49\times 10^{-2}}{4\pi \times 10^{-7}\times 450\times 1.06^2}[/tex]

[tex]\frac{\mathrm{d} i}{\mathrm{d} t}=9.34 A/s[/tex]