The zeros of a polynomial function are 1/2, -4 and -1.
What are the factors?

(multiple answers)

(x+1)
(x-4)
(x+4)
(x+2)
(x-2)
(x-1)
(2x+1)
(2x-1)

Respuesta :

Answer:

The factors are [tex] (x- \frac {\bf 1} {\bf 2}){\bf (x+4)}{\bf (x+1)} [/tex]

Step-by-step explanation:

Given that [tex]\frac{1}{2} ,-4, -1 [/tex] are the zeroes of the polynomial

Let the polynomial be [tex]P(x)[/tex]

For the polynomial [tex]P(x)[/tex], If r is a zero of [tex]P(x)[/tex] then [tex](x-r) [/tex] will be a factor of P(x).

If [tex](x-r)[/tex] is a factor of P(x) then r will be a zero of P(x).

From the given Zeroes we can write it in  form of factors as below:

[tex]P(x) = (x- \frac{1}{2})(x-(-4))(x-(-1)) [/tex]

[tex]P(x) = (x- \frac{1}{2})(x+4)(x+1) [/tex]