Respuesta :
Answer:
beginning inmediately: $ 140,095.127
after a year: $ 152,703.688
with a salvage value: $ 148,227.912
Explanation:
We need to find the PMT of 980,000 dollars being ordinary annuity or annuity-due discounted at 9%
Annuity-due:
[tex]PV \div \frac{1-(1+r)^{-time} }{rate}(1+r) = C\\[/tex]
PV $980,000.00
time 10
rate 0.09
[tex]980000 \div \frac{1-(1+0.09)^{-10} }{0.09} (1.09)= C\\[/tex]
C $ 140,095.127
Annuity:
[tex]PV \div \frac{1-(1+r)^{-time} }{rate} = C\\[/tex]
PV $980,000.00
time 10
rate 0.09
[tex]980000 \div \frac{1-(1+0.09)^{-10} }{0.09} = C\\[/tex]
C $ 152,703.688
If there is a salvage value, we discounted from the lease value:
980,000 - present value of salvage value:
[tex]\frac{Maturity}{(1 + rate)^{time} } = PV[/tex]
Maturity $68,000.0000
time 10.00
rate 0.09
[tex]\frac{68000}{(1 + 0.09)^{10} } = PV[/tex]
PV 28,723.93
980,000 - 28,724 = 951,276
Now we calculate the PMT:
[tex]PV \div \frac{1-(1+r)^{-time} }{rate} = C\\[/tex]
PV $951,276.00
time 10
rate 0.09
[tex]951276 \div \frac{1-(1+0.09)^{-10} }{0.09} = C\\[/tex]
C $ 148,227.912