Answer:
[tex]\dfrac{dV}{dt}=-0.097\ V/s[/tex]
Explanation:
Given that
Equivalent resistance given as
1/R=1/R₁+1/R₂
V= I R
V=I (1/R₁+1/R₂)
I = 2 A
[tex]\dfrac{dI}{dt}=10^{-2}\ A/s[/tex]
R₁ =3 ohms
[tex]\dfrac{dR_1}{dt}=0.5\ ohms/s[/tex]
R₂=5 ohms
[tex]\dfrac{dR_2}{dt}=-0.1\ ohms/s[/tex]
V=I (1/R₁+1/R₂)
[tex]\dfrac{dV}{dt}=\dfrac{dI}{dt}\left ( \dfrac{1}{R_1}+ \dfrac{1}{R_2}\right )+\left (-\dfrac{1}{R_1^2}\dfrac{dR_1}{dt}- \dfrac{1}{R_2^2}\dfrac{dR_2}{dt}\right )I[/tex]
Now by putting the values
[tex]\dfrac{dV}{dt}=10^{-2}\left ( \dfrac{1}{3}+ \dfrac{1}{5}\right )+\left (-\dfrac{1}{3^2}\times 0.5- \dfrac{1}{5^2}\times (-0.1)\right )2\ V/s[/tex]
[tex]\dfrac{dV}{dt}=-0.097\ V/s[/tex]