Respuesta :
Answer:
(a) Magnitude of force is 262.51 N
(b) Angle with East direction is [tex]-14.75^{o}[/tex]
Explanation:
Force by Jack in vector form
[tex]\overrightarrow F _1} = 64.7{\rm{ N}}\left( {\hat i} \right)[/tex]
Force by Jill in Vector form is given by
[tex]\begin{array}{c}\\{\overrightarrow F _2} = 86.5{\rm{ N }}\cos {\rm{4}}{{\rm{5}}^{\rm{o}}}\left( {\hat i} \right) + 86.5{\rm{ N }}\sin {\rm{4}}{{\rm{5}}^{\rm{o}}}\left( {\widehat j} \right)\\\\ = 61.16{\rm{ N}}\left( {\hat i} \right) + 61.16{\rm{ N}}\left( {\widehat j} \right)\\\end{array}[/tex]
Force by Jane is
[tex]\begin{array}{c}\\{\overrightarrow F _3} = 181{\rm{ N }}\cos {\rm{4}}{{\rm{5}}^{\rm{o}}}\left( {\hat i} \right) + 181{\rm{ N }}\sin {\rm{4}}{{\rm{5}}^{\rm{o}}}\left( { - \widehat j} \right)\\\\ = 128{\rm{ N}}\left( {\hat i} \right) + 128{\rm{ N}}\left( { - \widehat j} \right)\\\end{array}[/tex]
Net force is:
[tex]\overrightarrow F = {\overrightarrow F _1} + {\overrightarrow F _2} + {\overrightarrow F _3} [/tex]
Hence
[tex]\begin{array}{c}\\\overrightarrow F = 64.7{\rm{ N}}\left( {\hat i} \right) + 61.16{\rm{ N}}\left( {\hat i} \right) + 61.16{\rm{ N}}\left( {\widehat j} \right) + 128{\rm{ N}}\left( {\hat i} \right) + 128{\rm{ N}}\left( { - \widehat j} \right)\\\\ = 253.86{\rm{ N}}\left( {\hat i} \right) - 66.84{\rm{ N}}\left( {\widehat j} \right)\\\end{array}[/tex]
The net force will be given by
[tex]F = \sqrt {{{\left( {{F_x}} \right)}^2} + {{\left( {{F_y}} \right)}^2}[/tex]
Since [tex]F_{x}=253.86N[/tex] and [tex]F_{y}=-66.84N[/tex]
[tex]\begin{array}{c}\\F = \sqrt {{{\left( {253.86{\rm{ N}}} \right)}^2} + {{\left( { - 66.84{\rm{ N}}} \right)}^2}} \\\\ = {\bf{262.51 N}}\\\end{array}[/tex]
The direction of net force is:
[tex]\theta = {\tan ^{ - 1}}\left {\frac{{{F_y}}}{{{F_x}}}}[/tex]
Since [tex]F_{x}=253.86N[/tex] and [tex]F_{y}=-66.84N[/tex]
[tex]\begin{array}{c}\\\theta = {\tan ^{ - 1}}\left( {\frac{{ - 66.84{\rm{ N}}}}{{253.86{\rm{ N}}}}} \right)\\\\ = {\tan ^{ - 1}}\left( { - 0.2633} \right)\\\\ = {\bf{ - 14}}{\bf{.7}}{{\bf{5}}^{\bf{o}}}\\\end{array}[/tex]
The angle with East direction is [tex]-14.75^{o}[/tex]
Net force exerted on the donkey is in the south-east direction. So, the angle of net force from the east direction is [tex]-14.75^{o}[/tex] and it is [tex]14.75^{o}[/tex] from the south.
