Three people pull simultaneously on a stubborn donkey. Jack pulls directly ahead of the donkey with a force of 64.7 N64.7 N , Jill pulls with 86.5 N86.5 N in a direction 45° to the left, and Jane pulls in a direction 45° to the right with 181 N181 N . (Since the donkey is involved with such uncoordinated people, who can blame it for being stubborn?) Find the magnitude of the net force the people exert on the donkey.
What is the direction of the net force? Express this as the angle from the east direction between 0° and 90°, with a positive sign for north of east and a negative sign for south of east.

Respuesta :

Answer:

(a) Magnitude of force is 262.51 N

(b) Angle with East direction is [tex]-14.75^{o}[/tex]

Explanation:

Force by Jack in vector form

[tex]\overrightarrow F _1} = 64.7{\rm{ N}}\left( {\hat i} \right)[/tex]  

Force by Jill in Vector form is given by

[tex]\begin{array}{c}\\{\overrightarrow F _2} = 86.5{\rm{ N }}\cos {\rm{4}}{{\rm{5}}^{\rm{o}}}\left( {\hat i} \right) + 86.5{\rm{ N }}\sin {\rm{4}}{{\rm{5}}^{\rm{o}}}\left( {\widehat j} \right)\\\\ = 61.16{\rm{ N}}\left( {\hat i} \right) + 61.16{\rm{ N}}\left( {\widehat j} \right)\\\end{array}[/tex]

Force by Jane is

[tex]\begin{array}{c}\\{\overrightarrow F _3} = 181{\rm{ N }}\cos {\rm{4}}{{\rm{5}}^{\rm{o}}}\left( {\hat i} \right) + 181{\rm{ N }}\sin {\rm{4}}{{\rm{5}}^{\rm{o}}}\left( { - \widehat j} \right)\\\\ = 128{\rm{ N}}\left( {\hat i} \right) + 128{\rm{ N}}\left( { - \widehat j} \right)\\\end{array}[/tex]

Net force is:

[tex]\overrightarrow F = {\overrightarrow F _1} + {\overrightarrow F _2} + {\overrightarrow F _3} [/tex]

Hence

[tex]\begin{array}{c}\\\overrightarrow F = 64.7{\rm{ N}}\left( {\hat i} \right) + 61.16{\rm{ N}}\left( {\hat i} \right) + 61.16{\rm{ N}}\left( {\widehat j} \right) + 128{\rm{ N}}\left( {\hat i} \right) + 128{\rm{ N}}\left( { - \widehat j} \right)\\\\ = 253.86{\rm{ N}}\left( {\hat i} \right) - 66.84{\rm{ N}}\left( {\widehat j} \right)\\\end{array}[/tex]

The net force will be given by

[tex]F = \sqrt {{{\left( {{F_x}} \right)}^2} + {{\left( {{F_y}} \right)}^2}[/tex]

Since [tex]F_{x}=253.86N[/tex] and [tex]F_{y}=-66.84N[/tex]

[tex]\begin{array}{c}\\F = \sqrt {{{\left( {253.86{\rm{ N}}} \right)}^2} + {{\left( { - 66.84{\rm{ N}}} \right)}^2}} \\\\ = {\bf{262.51 N}}\\\end{array}[/tex]

The direction of net force is:

[tex]\theta = {\tan ^{ - 1}}\left {\frac{{{F_y}}}{{{F_x}}}}[/tex]

Since [tex]F_{x}=253.86N[/tex] and [tex]F_{y}=-66.84N[/tex]  

[tex]\begin{array}{c}\\\theta = {\tan ^{ - 1}}\left( {\frac{{ - 66.84{\rm{ N}}}}{{253.86{\rm{ N}}}}} \right)\\\\ = {\tan ^{ - 1}}\left( { - 0.2633} \right)\\\\ = {\bf{ - 14}}{\bf{.7}}{{\bf{5}}^{\bf{o}}}\\\end{array}[/tex]

The angle with East direction is [tex]-14.75^{o}[/tex]

Net force exerted on the donkey is in the south-east direction. So, the angle of net force from the east direction is [tex]-14.75^{o}[/tex] and it is [tex]14.75^{o}[/tex] from the south.

Ver imagen opudodennis