Free Fall: A rock is thrown directly upward from the edge of a flat roof of a building that is 56.3 meters tall. The rock misses the building on its way down, and is observed to strike the ground 4.00 seconds after being thrown. Take the acceleration due to gravity to have magnitude 9.80 m/s2 and neglect any effects of air resistance. With what speed was the rock thrown?

Respuesta :

Answer:

v₀₁= 5.525 m / s

Explanation

Freefall Formulas :

The sign of acceleration due to gravity  (g) is positive if the object is going down and negative if the object is going up.

vf= v₀+gt  

vf²=v₀²+2*g*h

h= v₀t+ (1/2)*g*t²

Where:  

h: hight in meters (m)    

t : time in seconds (s)

v₀: initial speed in m/s  

vf: final speed in m/s  

g: acceleration due to gravity in m/s²

Kinematics of the rock from the starting point with vo until it reaches its maximum height:

vf₁= v₀₁-gt₁  :vf₁ =0 to maximum height

0= v₀₁-gt₁

v₀₁ = g*t₁

t₁ =v₀₁ / g      Equation (1)

vf₁²= v₀₁²-2*g*h₁   : vf₁ =0 to maximum height

0 = v₀₁²-2*g*h₁

2*g*h₁ = v₀₁²

h₁ = (v₀₁²)/(2g)   Equation (2)

Kinematics of the rock when it falls from the maximum height until it touches the floor

h₂= v₀₂t+ (1/2)*g*t₂²  v₀₂=vf₁ =0

h₂= 0+ (1/2)*g*t₂²

h₂= (1/2)*g*t₂²   Equation (3)

Equation that relates h₁ to h₂

h₂=  h₁ + 56.3  ,  h₁ = (v₀₁²)/(2g)

h₂= (v₀₁²)/(2g) + 56.3  Equation (4)

Equation that relates t₁ to t₂

t₁ + t₂ =4 s

t₂ =4 -t₁

t₂ =4 -(v₀₁/g )

Calculation of v₀₁

We replace equation 4 and equation 5 in equation 3

(v₀₁²)/(2g) + 56.3 = (1/2)*g*(4 -(v₀₁/g )

(v₀₁²)/(2g) + 56.3 = (1/2)*g* (16 - 2*4*(v₀₁/g )+((v₀₁/g )²)

we eliminate (v₀₁²)/(2g) on both sides of the equation

56.3 = (1/2)*g* (16 - 2*4*(v₀₁/g ))

56.3 = 78.4 - 4*v₀₁

4*v₀₁ =78.4-56.3

v₀₁= (78.4-56.3) / ( 4)

v₀₁= 5.525 m / s