contestada

Minimize the objective function P = 5x + 8y for the given constraints.
X>(or equal to)0
y>(or equal to)0
2x + 3y >(or equal to) 15
3x + 2y >(or equal to)15

Respuesta :

Step-by-step explanation and the answer:

The coordinates to the given constraints are (0,5), (7.5,0), (3,3), (0,7.5), (5,0).

(x,y)= [tex]P=5x+8y[/tex]

(0,5)=[tex]P=5(0)+8(5)=40[/tex]

(7.5,0)=[tex]P=5(7.5)+8(0)=37.5[/tex]

(3,3)=[tex]P=5(3)+8(3)=39[/tex]

(0,7.5)= [tex]P=5(0)+8(7.5)=60[/tex]

(5,0)= [tex]P=5(0)+8(5)=25[/tex]

Min Value would be 25 and Max. Value would be 60.

Let me know if this is correct.