Answer:
(a). The path length is 3.09 m at 30°.
(b). The path length is 188.4 m at 30 rad.
(c). The path length is 1111.5 m at 30 rev.
Explanation:
Given that,
Radius = 5.9 m
(a). Angle [tex]\theta=30°[/tex]
We need to calculate the angle in radian
[tex]\theta=30\times\dfrac{\pi}{180}[/tex]
[tex]\theta=0.523\ rad[/tex]
We need to calculate the path length
Using formula of path length
[tex]Path\ length =angle\times radius[/tex]
[tex]Path\ length=0.523\times5.9[/tex]
[tex]Path\ length =3.09\ m[/tex]
(b). Angle = 30 rad
We need to calculate the path length
[tex]Path\ length=30\times5.9[/tex]
[tex]Path\ length=177\ m[/tex]
(c). Angle = 30 rev
We need to calculate the angle in rad
[tex]\theta=30\times2\pi[/tex]
[tex]\theta=188.4\ rad[/tex]
We need to calculate the path length
[tex]Path\ length=188.4\times5.9[/tex]
[tex]Path\ length =1111.56\ m[/tex]
Hence, (a). The path length is 3.09 m at 30°.
(b). The path length is 188.4 m at 30 rad.
(c). The path length is 1111.5 m at 30 rev.