Answer:[tex]P\left ( A\right )=0.45[/tex]
[tex]P\left ( B\right )=0.32[/tex]
Step-by-step explanation:
Given
[tex]P\left ( A\cup B\right )=0.626[/tex]
[tex]P\left ( A\cap B\right )=0.144[/tex]
and we know
[tex]P\left ( A\cup B\right )=P\left ( A\right )+P\left ( B\right )-P\left ( A\cap B\right )[/tex]
[tex]0.626=P\left ( A\right )+P\left ( B\right )-0.144[/tex]
[tex]0.77=P\left ( A\right )+P\left ( B\right )[/tex]-------1
as it is given
A and B are independent therefore
[tex]P\left ( A\cap B\right )=P\left ( A\right )\cdot P\left ( B\right )[/tex]
[tex]0.144=P\left ( A\right )\cdot P\left ( B\right )[/tex]
Substitute value of [tex]P\left ( B\right )[/tex] in 1
[tex]0.77=P\left ( A\right )+\frac{0.144}{P\left ( A\right )}[/tex]
on solving [tex]P\left ( A\right )=0.45[/tex]
[tex]P\left ( B\right )=0.32[/tex]