A wall clock has a minute hand with a length of 0.53 m and an hour hand with a length of 0.26 m. Take the center of the clock as the origin, and use a Cartesian coordinate system with the positive x axis pointing to 3 o'clock and the positive y axis pointing to 12 o'clock. What is the magnitude of the acceleration of the tip of the minute hand of the clock?

Respuesta :

Answer:

a  =1.61 × 10⁻⁶ m/s²

Explanation:

given,

length of minute hand = 0.53 m

length of hour hand = 0.26 m

the time taken by the minute hand to complete one revolution is T=3600 s

the angular frequency is

                        [tex]\omega =\dfrac{2\pi }{T}[/tex]

                         [tex]\omega =\dfrac{2\pi }{3600}[/tex]

                         [tex]\omega=0.001745 rad/sec[/tex]

the acceleration is  

                                [tex]a = r \omega^2[/tex]

                                [tex]a = (0.53) \times (0.001745)^2[/tex]

                                       a  =1.61 × 10⁻⁶ m/s²