Exactly 1.0 mol N2O4 is placed in an empty 1.0-L container and allowed to reach equilibrium described by the equation N2O4(g) 2NO2(g). If at equilibrium the N2O4 is 28.0% dissociated, what is the value of the equilibrium constant, Kc, for the reaction under these conditions? a. 0.44 b. 2.3 c. 0.11 d. 0.78 e. 0.31

Respuesta :

Answer : The correct option is, (a) 0.44

Explanation :

First we have to calculate the concentration of [tex]N_2O_4[/tex].

[tex]\text{Concentration of }N_2O_4=\frac{\text{Moles of }N_2O_4}{\text{Volume of solution}}[/tex]

[tex]\text{Concentration of }N_2O_4=\frac{1.0moles}{1.0L}=1.0M[/tex]

Now we have to calculate the dissociated concentration of [tex]N_2O_4[/tex].

The balanced equilibrium reaction is,

                             [tex]N_2O_4(g)\rightleftharpoons 2NO_2(aq)[/tex]

Initial conc.           1.0 M          0

At eqm. conc.     (1.0-x) M    (2x) M

As we are given,

The percent of dissociation of [tex]N_2O_4[/tex] = [tex]\alpha[/tex] = 28.0 %

So, the dissociate concentration of [tex]N_2O_4[/tex] = [tex]C\alpha=1.0M\times \frac{28.0}{100}=0.28M[/tex]

The value of x = [tex]C\alpha[/tex] = 0.28 M

Now we have to calculate the concentration of [tex]N_2O_4\text{ and }NO_2[/tex] at equilibrium.

Concentration of [tex]N_2O_4[/tex] = 1.0 - x  = 1.0 - 0.28 = 0.72 M

Concentration of [tex]NO_2[/tex] = 2x = 2 × 0.28 = 0.56 M

Now we have to calculate the equilibrium constant for the reaction.

The expression of equilibrium constant for the reaction will be:

[tex]K_c=\frac{[NO_2]^2}{[N_2O_4]}[/tex]

Now put all the values in this expression, we get :

[tex]K_c=\frac{(0.56)^2}{0.72}=0.44[/tex]

Therefore, the equilibrium constant [tex]K_c[/tex] for the reaction is, 0.44