In △ABC, m∠A=23°, a=10, and b=13. Find c to the nearest tenth.

Answer:
[tex]c=20.6[/tex]
Step-by-step explanation:
We know that m∠A=23°, a=10, and b=13
To find c we must first find B and C. Then we use the sine theorem
sine theorem:
[tex]\frac{sin(A)}{a}=\frac{sin(B)}{b} =\frac{sin(C)}{c}[/tex]
then:
[tex]\frac{sin(A)}{a}=\frac{sin(B)}{b}[/tex]
[tex]\frac{sin(23)}{10}=\frac{sin(B)}{13}[/tex]
[tex]0.0391=\frac{sin(B)}{13}[/tex]
[tex]Arcsin(13*0.0391)=B[/tex]
[tex]B=30.55[/tex]
So
We know that:
[tex]23+30.55+C=180\\C=180-23-30.55\\C=126.45[/tex]
we use the sine theorem again to find the length c
[tex]\frac{sin(23)}{10}=\frac{sin(C)}{c}[/tex]
[tex]0.0391=\frac{sin(C)}{c}[/tex]
[tex]c=\frac{sin(126.45)}{0.0391}[/tex]
[tex]c=20.6[/tex]
Answer:
Using Sine Rule
[tex]\rightarrow \frac{a}{\sinA}=\frac{b}{\sin B}=\frac{c}{\sin C}\\\\ \rightarrow \frac{10}{\sin 23^{\circ}}=\frac{13}{\sin B}\\\\ \sinB=\frac{13 \times 0.39}{10}\\\\ \sin B=\frac{5.07}{10}\\\\ \sinB=0.507\\\\B=31^{\circ}[/tex]
Using Angle sum property of Triangle
∠A+∠B+∠C=180°
23°+31°+∠C=180°
∠C=180°-54°
∠C=126°
Again using Sine rule
[tex]\frac{c}{\sin C}=\frac{b}{\sin B}\\\\ \frac{c}{\sin126^{\circ}}=\frac{13}{0.507}\\\\c=\frac{0.809 \times 13}{0.507}\\\\c=\frac{10.517}{0.507}\\\\c=20.7435[/tex]
Length of third side=20.75(approx)