Respuesta :

Answer: First Option

[tex]x_1=-\frac{2}{3}[/tex] and  [tex]x_2=-3[/tex]

Step-by-step explanation:

We have the following quadratic equation:

[tex]3x^2 +11x+6=0[/tex]

To solve this equation use the quadratic formula

For an equation of the form:

[tex]ax ^ 2 + bx + c = 0[/tex]

The quadratic formula is:

[tex]x=\frac{-b\±\sqrt{b^2-4ac}}{2a}[/tex]

Note that in this case: [tex]a=3,\ b=11,\ c=6[/tex]

Then:

[tex]x=\frac{-11\±\sqrt{11^2-4(3)(6)}}{2(3)}[/tex]

[tex]x=\frac{-11\±\sqrt{121-72}}{6}[/tex]

[tex]x=\frac{-11\±\sqrt{49}}{6}[/tex]

[tex]x=\frac{-11\±7}{6}[/tex]

[tex]x_1=\frac{-11+7}{6}[/tex]

[tex]x_1=-\frac{2}{3}[/tex]

[tex]x_2=\frac{-11-7}{6}[/tex]

[tex]x_2=\frac{-18}{6}[/tex]

[tex]x_2=-3[/tex]

The solutions are: [tex]x_1=-\frac{2}{3}[/tex] and  [tex]x_2=-3[/tex]

Answer:

-[tex]\frac{2}{3}[/tex],-3

Step-by-step explanation:

Given equation,

[tex]3x^2+11x+6=0[/tex]

By the middle term splitting,

[tex]3x^2 + (9+2)x + 6 = 0[/tex]

[tex]3x^2 + 9x + 2x + 6 = 0[/tex]

[tex]3x(x+3)+2(x+3)=0[/tex]

[tex](3x+2)(x+3)=0[/tex]

By zero product product,

3x + 2 = 0 or x + 3 = 0

x = [tex]-\frac{2}{3}[/tex] or x = -3

which is the solution of the given equation.

Hence, FIRST option is correct.