Respuesta :

Answer:

[tex]x=0,\pi,2\pi[/tex]

Step-by-step explanation:

The given equation is: [tex]\tan^2x\sec^2x+2\sec^2x-\tan^2x=2[/tex].

Subtract 2 from both sides

[tex]\tan^2x\sec^x+2\sec^2x-\tan^2x-2=0[/tex].

Factor by grouping:

[tex]\sec^2x(\tan^2x+2)-1(\tan^2x+2)=0[/tex].

[tex](\sec^2x-1)(\tan^2x+2)=0[/tex].

Apply the zero product principle:

[tex](\sec^2x-1)=0\:\:or\:\:(\tan^2x+2)=0[/tex].

[tex]\sec^2x=1\:\:or\:\:\tan^2x=-2[/tex].

If [tex]\sec^2x=1[/tex], then [tex]\sec x=\pm 1[/tex],

[tex]\implies \cos x=\pm1[/tex]

This implies that: [tex]x=0,\pi,2\pi[/tex]

If [tex]\tan^2x=-2[/tex], x is not defined for all real values.

Therefore the required solution on the given interval [tex]0\le x\le2\pi[/tex] is  [tex]x=0,\pi,2\pi[/tex]