In two or more complete sentences, explain how to use ordered pairs of points in x) = 2x + 5 and g(x)=
to
determine if Ax) and g(x) are inverses of each other

Respuesta :

Answer:

see the explanation

Step-by-step explanation:

we have

[tex]A(x)=2x+5[/tex]

Find the inverse of A(x)

Let

y=A(x)

[tex]y=2x+5[/tex]

Exchange the variables x for y and y for x

[tex]x=2y+5[/tex]

Isolate the variable y

[tex]2y=x-5[/tex]

[tex]y=\frac{x-5}{2}[/tex]

Let

[tex]g(x)=y[/tex]

[tex]g(x)=\frac{x-5}{2}[/tex] ------> function inverse of A(x)

Explanation

For x=1

Find the value of A(x)

[tex]A(1)=2(1)+5=7[/tex]

The point (1,7) is a solution for A(x)

That means-----> The point (7,1) is a solution for the function inverse g(x)

Verify

For x=7

[tex]g(7)=\frac{7-5}{2}=1[/tex]

The point (7,1) is a solution for g(x)

therefore

A(x) and g(x) are inverses of each other if the point (x,y) is a solution of A(x) and the point (y,x) is a solution of g(x)