Answer:
Cost of Equity 8.794%
Explanation:
We can solve for the cost of equity using the CAPM
[tex]Ke= r_f + \beta (r_m-r_f)[/tex]
risk free 0.0291
premium market = market rate - risk free 0.071
beta(non diversifiable risk) 0.88
[tex]Ke= 0.0291 + 0.88 (0.071)[/tex]
Ke 0.09158 = 9.158%
Or using the gordon dividend grow model
[tex]\frac{divends_1}{return-growth} = Intrinsic \: Value[/tex]
D= 3.57
return = ?
growth 0.0325
stock = 68.91
[tex]\frac{3.57}{return-0.0325} = 68.91[/tex]
we solve for return:
[tex]\frac{3.57}{68.91} + 0.0325 = return[/tex]
return = 0,08430670 = 8.43%
Now we have two diferent rates, so we can do an average to get the best estimate cost of equity
(9.158 + 8.43)/2 = 8.794%