Respuesta :

Answer: Option a

[tex]\sigma=2.83[/tex]

Step-by-step explanation:

The formula for calculating the standard sigma deviation is:

[tex]\sigma=\sqrt{\frac{\sum_{i=1}^n(X_i-{\displaystyle {\overline {x}}})^2}{N}}[/tex]

Where

[tex]{\displaystyle {\overline {x}}}[/tex] is the average

[tex]X_1, X_2, ..., X_i[/tex] is the data set

N is the amount of data

First we calculate the average

[tex]{\displaystyle {\overline {x}}}=\frac{2+4+6+8+10}{5}[/tex]

[tex]{\displaystyle {\overline {x}}}=6[/tex]

Now we calculate the square differences

[tex](2-6)^2=16\\\\(4-6)^2=4\\\\(6-6)^2=0\\\\(8-6)^2=4\\\\(10-6)^2=16[/tex]

Then

[tex]\sum(X_i-{\displaystyle {\overline {x}}})^2} = 16+ 4+0+4+16=40[/tex]

Finally the standard deviation for the set of data is:

[tex]\sigma=\sqrt{\frac{40}{5}}[/tex]

[tex]\sigma=2.83[/tex]