An autosomal recessive disease has an incidence of 1/10,000. What is the approximate frequency of heterozygote carriers for this disease? Assume Hardy-Weinberg conditions apply
A. 1 /50, or 2%
B. 1/100, or 1%
C. 1 /1000, or 0.1%
D. 1 /10, or 10%
E. 1 /4, or 25%

Respuesta :

Answer:

Option B

Explanation:

Given

Number of incidences or frequency of an autosomal recessive disease [tex]= \frac{1}{10000}[/tex]

As per Hardy Weinberg's equation, frequency of a recessive genotype is [tex]q^{2}[/tex]

[tex]q = \sqrt{\frac{1}{10000} }\\ q = \frac{1}{100}[/tex]

As per first equation of Hardy Weinberg's -

[tex]p+q=1[/tex]

so ,

[tex]p = 1-q\\p = 1-\frac{1}{100}\\p = \frac{99}{100}[/tex]

[tex]p^2 = (\frac{99}{100})^2\\p^2 =\frac{9801}{1000}[/tex]

As per second equation of Hardy Weinberg's -

[tex]p^{2} + q^{2} + 2pq=1[/tex]

Substituting the given values in above equation, we get -

[tex]\frac{9801}{10000} + \frac{1}{100} + 2pq=1\\2pq = 1-(\frac{9801}{10000} + \frac{1}{100})\\2pq = 0.99%\\

OR

[tex]2pq=1[/tex]%

[tex]2pq = \frac{1}{100}[/tex]

Hence, option B is correct.