Respuesta :
Answer:
-40 < F < 284
Step-by-step explanation:
* Lets explain how to solve the problem
- The range of the antifreeze protect the car between
-40°C and 140°C
- The formula of converting Celsius temperature to Fahrenheit
temperature is C = 5/9 (F - 32)
- Lets find F in terms of C
∵ C = 5/9 (F - 32)
- Multiply each side by 9/5
∴ 9/5 C = F - 32
- Add 32 to both sides
∴ 9/5 C + 32 = F
∴ F = 9/5 C + 32
- Lets find the range of the antifreeze protects the car in
Fahrenheit temperature
∵ C = -40
∴ F = 9/5 (-40) + 32 = -40
∵ C = 140
∴ F = 9/5 (140) + 32 = 284
∴ The range is between -40°F and 284°F
∴ -40 < F < 284
Answer:
A compound inequality to determine the Fahrenheit temperature range at which the antifreeze protects the car is [tex]-40^\circ F<\frac{9C}{5}+32<284^\circ F[/tex]
Step-by-step explanation:
Given : The label on the car's antifreeze container claims to protect the car between -40°C and 140°C. To convert Celsius temperature to Fahrenheit temperature, the formula is [tex]C=\frac{5}{9} (F-32)[/tex].
To find : Write a compound inequality to determine the Fahrenheit temperature range at which the antifreeze protects the car ?
Solution :
First we convert formula in terms of Celsius and get formula of Fahrenheit,
[tex]C=\frac{5}{9} (F-32)[/tex]
[tex]\frac{9C}{5}=(F-32)[/tex]
[tex]\frac{9C}{5}+32=F[/tex]
Now, Converting Celsius into Fahrenheit,
-40°C into °F,
[tex]F=\frac{9(-40)}{5}+32[/tex]
[tex]F=-72+32[/tex]
[tex]F=-40^\circ F[/tex]
140°C into °F,
[tex]F=\frac{9(140)}{5}+32[/tex]
[tex]F=252+32[/tex]
[tex]F=284^\circ F[/tex]
As, [tex]-40^\circ C<\frac{5}{9} (F-32)<140^\circ C[/tex].
Similarly, [tex]-40^\circ F<\frac{9C}{5}+32<284^\circ F[/tex].
Therefore, A compound inequality to determine the Fahrenheit temperature range at which the antifreeze protects the car is [tex]-40^\circ F<\frac{9C}{5}+32<284^\circ F[/tex]