Respuesta :

Answer:

g(x)=(x+3/5)/2

Step-by-step explanation:

When f(g(x)) and (g(f(x)) both equal x, they are inverses.

f(x)=2x-3/5

y=2x-3/5

x=2y-3/5

x+3/5=2y

(x+3/5)/2=y

(x+3/5)/2=g(x)

For this case we must find the inverse of the following function:

[tex]f (x) = 2x- \frac {3} {5}[/tex]

We change f(x) by y:

[tex]y = 2x- \frac {3} {5}[/tex]

We exchange the variables:

[tex]x = 2y- \frac {3} {5}[/tex]

We cleared "y":

Adding[tex]\frac {3} {5}[/tex] to both sides of the equation:

[tex]x + \frac {3} {5} = 2y[/tex]

DIviding between 2 to both sides of the equation:

[tex]y = \frac {x} {2} + \frac {3} {10}[/tex]

We change y for[tex]f^{-1} (x)[/tex]:

[tex]f ^ {- 1} (x) = \frac {x} {2} + \frac {3} {10}[/tex]

Answer:

[tex]f ^{ - 1} (x) = \frac {x} {2} + \frac {3} {10}[/tex]