Consider the following equation. f(x, y) = y3/x, P(1, 2), u = 1 3 2i + 5 j (a) Find the gradient of f. ∇f(x, y) = Correct: Your answer is correct. (b) Evaluate the gradient at the point P. ∇f(1, 2) = Correct: Your answer is correct. (c) Find the rate of change of f at P in the direction of the vector u. Duf(1, 2) = Incorrect: Your answer is incorrect.

Respuesta :

[tex]f(x,y)=\dfrac{y^3}x[/tex]

a. The gradient is

[tex]\nabla f(x,y)=\dfrac{\partial f}{\partial x}\,\vec\imath+\dfrac{\partial f}{\partial y}\,\vec\jmath[/tex]

[tex]\boxed{\nabla f(x,y)=-\dfrac{y^3}{x^2}\,\vec\imath+\dfrac{3y^2}x\,\vec\jmath}[/tex]

b. The gradient at point P(1, 2) is

[tex]\boxed{\nabla f(1,2)=-8\,\vec\imath+12\,\vec\jmath}[/tex]

c. The derivative of [tex]f[/tex] at P in the direction of [tex]\vec u[/tex] is

[tex]D_{\vec u}f(1,2)=\nabla f(1,2)\cdot\dfrac{\vec u}{\|\vec u\|}[/tex]

It looks like

[tex]\vec u=\dfrac{13}2\,\vec\imath+5\,\vec\jmath[/tex]

so that

[tex]\|\vec u\|=\sqrt{\left(\dfrac{13}2\right)^2+5^2}=\dfrac{\sqrt{269}}2[/tex]

Then

[tex]D_{\vec u}f(1,2)=\dfrac{\left(-8\,\vec\imath+12\,\vec\jmath\right)\cdot\left(\frac{13}2\,\vec\imath+5\,\vec\jmath\right)}{\frac{\sqrt{269}}2}[/tex]

[tex]\boxed{D_{\vec u}f(1,2)=\dfrac{16}{\sqrt{269}}}[/tex]