Find a power series representation for the function. (Give your power series representation centered at x = 0.)f(x) = x3x2 + 1f(x) = ∞n = 0 Determine the interval of convergence. (Enter your answer using interval notation.)

Respuesta :

I suppose you mean

[tex]f(x)=\dfrac{x^3}{x^2+1}[/tex]

Recall that for [tex]|x|<1[/tex], we have

[tex]\dfrac1{1-x}=\displaystyle\sum_{n=0}^\infty x^n[/tex]

Then

[tex]\dfrac1{1+x^2}=\dfrac1{1-(-x^2)}=\displaystyle\sum_{n=0}^\infty(-x^2)^n=\sum_{n=0}^\infty(-1)^nx^{2n}[/tex]

which is valid for [tex]|-x^2|=|x|^2<1[/tex], or more simply [tex]|x|<1[/tex].

Finally,

[tex]f(x)=\displaystyle\frac{x^3}{x^2+1}=\sum_{n=0}^\infty(-1)^nx^{2n+3}[/tex]