Respuesta :

Answer:

[tex]4^x-5=6[/tex] gives the solution [tex]x=\frac{\log(11)}{\log(4)}[/tex].

[tex]4^{x-5}=6[/tex] gives the solution [tex]x=\frac{\log(6)}{\log(4)}+5[/tex].

Step-by-step explanation:

I will solve both interpretations.

If we assume the equation is [tex]4^{x}-5=6[/tex], then the following is the process:

[tex]4^x-5=6[/tex]

Add 5 on both sides:

[tex]4^x=6+5[/tex]

Simplify:

[tex]4^x=11[/tex]

Now write an equivalent logarithm form:

[tex]\log_4(11)=x[/tex]

[tex]x=\log_4(11)[/tex]

Now using the change of base:

[tex]x=\frac{\log(11)}{\log(4)}[/tex].

If we assume the equation is [tex]4^{x-5}=6[/tex], then we use the following process:

[tex]4^{x-5}=6[/tex]

Write an equivalent logarithm form:

[tex]\log_4(6)=x-5[/tex]

[tex]x-5=\log_4(6)[/tex]

Add 5 on both sides:

[tex]x=\log_4(6)+5[/tex]

Use change of base formula:

[tex]x=\frac{\log(6)}{\log(4)}+5[/tex]

Answer:

6.292

Step-by-step explanation:

I got it right on the test.