Respuesta :

Answer:

[tex]\frac{4x^2-3x}{(x+9)(x-4)}[/tex]

Step-by-step explanation:

The sum of two rational expressions is done in the following way:

[tex]\frac{a}{b}+\frac{c}{d} = \frac{a*d + c*b}{b*d}[/tex]

In this case we have the following rational expressions

[tex]\frac{3x}{x+9} + \frac{x}{x-4}[/tex]

So:

[tex]a=3x\\d=(x+9)\\c=x\\d=(x-4)[/tex]

Therefore

[tex]\frac{3x}{x+9} + \frac{x}{x-4}=\frac{3x(x-4)+x(x+9)}{(x+9)(x-4)}[/tex]

simplifying we obtain:

[tex]\frac{3x(x-4)+x(x+9)}{(x+9)(x-4)}=\frac{3x^2-12x+x^2+9x}{(x+9)(x-4)}\\\\\frac{3x^2-12x+x^2+9x}{(x+9)(x-4)}=\frac{4x^2-3x}{(x+9)(x-4)}[/tex]

Answer:

[tex]\frac{4x^2-3x}{(x+9)(x-4)}[/tex]

Step-by-step explanation:

We are given the following expression and we are to find the sum of this rational expression below:

[tex] \frac { 3 x } { x + 9 } + \frac { x } { x - 4 } [/tex]

Taking LCM of it to get:

[tex]\frac{3x}{x+9} =\frac{3x(x-4)}{(x+9)(x-4)}[/tex]

[tex]\frac{x}{x-4} =\frac{x(x+9)}{(x-4)(x+9)}[/tex]

[tex]\frac{3x(x-4)}{(x+9)(x-4)}+\frac{x(x+9)}{(x-4)(x+9)}[/tex]

[tex]\frac{3x(x-4)+x(x-9)}{(x+9)(x-4)}[/tex]

[tex]\frac{4x^2-3x}{(x+9)(x-4)}[/tex]