Answer:
[tex](1+ \frac{cos \alpha }{sin \alpha } - \frac{1}{ \sin( \alpha ) } )(1+ \frac{ \sin( \alpha ) }{ \cos( \alpha ) }+ \frac{1}{ \cos( \alpha ) } )[/tex]
[tex] (\frac{ \sin( \alpha + \cos( \alpha ) -1}{ \sin( \alpha ) }) ( \frac{ \cos( \alpha + \sin( \alpha )+1 ) }{ cos( \alpha ) } ) \\ [/tex]
[tex] \frac{( \sin( \alpha + \cos( \alpha )^2)-1^2 ) }{ \sin( \alpha \cos( \alpha ) ) } [/tex]
[tex] \frac{sin^2@+cos^2@+2sin@cos@ -1}{sin@cos@ } \\ [/tex]
[tex] \frac{1+2sin@cos@-1}{sin@ cos@} \\ [/tex]
[tex] \frac{2sin@cos@}{sin@cos@} \\ [/tex]
[tex]2 \\ [/tex]
hence proved