Respuesta :

dhiab

Answer:

Step-by-step explanation:

f(x)=x²+2x−5 and g(x)=2x+4

(f⋅g)(x) = (x²+2x−5)(2x+4) = 2x^3 +4x² -10x +4x²+8x-20

(f⋅g)(x) = 2x^3+8x² -2x -20

For this case we have the following functions:

[tex]f (x) = x ^ 2 + 2x-5\\g (x) = 2x + 4[/tex]

We must find [tex](f * g) (x)[/tex]. By definition we have to:

[tex](f * g) (x) = f (x) * g (x)[/tex]

So:

[tex](f * g) (x) = (x ^ 2 + 2x-5) (2x + 4)[/tex]

Applying distributive property we have:

[tex](f * g) (x) = 2x ^ 3 + 4x ^ 2 + 4x ^ 2 + 8x-10x-20[/tex]

We add similar terms:

[tex](f * g) (x) = 2x ^ 3 + 8x ^ 2-2x-20[/tex]

Answer:

[tex](f * g) (x) = 2x ^ 3 + 8x ^ 2-2x-20[/tex]