Respuesta :

Answer: option b.

Step-by-step explanation:

You need to remember that:

[tex]b^\frac{m}{n}=\sqrt[n]{b^m}\\\\\sqrt[n]{a^n}=a[/tex]

Then, you can rewrite [tex](-32)^\frac{3}{5}[/tex] as:

[tex]=\sqrt[5]{(-32)^3}[/tex]

Now you need to descompose 32 into its prime factors:

[tex]32=2*2*2*2*2=2^5[/tex]

Rewriting:

 [tex]=\sqrt[5]{(-2^5)^3}[/tex]

The power of a power property states that:

[tex](a^b)^c=a^{(bc)}[/tex]

Then:

[tex]=\sqrt[5]{(-2)^{15}}=(-2)^3=-8[/tex]