Respuesta :

Answer:

[tex]\frac{3}{4}[/tex]

Step-by-step explanation:

The given expression is:

[tex]\frac{3m-6}{4m+12} \cdot \frac{m^2+5m+6}{m^2-4}[/tex]

We factor to get:

[tex]\frac{3(m-2)}{4(m+3)} \cdot \frac{(m+2)(m+3)}{(m-2)(m+2)}[/tex]

Cancel out the common factors to get:

[tex]\frac{3(m-2)}{4(m+3)} \cdot \frac{(m+3)}{(m-2)}[/tex]

We cancel further to get:

[tex]\frac{3(m-2)}{4(m+3)} \cdot\frac{(m+3)}{(m-2)}=\frac{3}{4}[/tex]

The correct chice is B.