Respuesta :

It A because the two mirror each other so you can simplify them to (3x−5)^2.

Answer:

(A) [tex](3x-5)(3x-5)[/tex]

Step-by-step explanation:

Perfect-square trinomials have this form:

[tex]a^2x^2 \± 2ab + b^2[/tex]

And can be expressed as a squared binomial:

[tex](ax \± b)^2[/tex]

Which is the same as: [tex](ax+b)(ax+b)[/tex] or  [tex](ax-b)(ax-b)[/tex]

You can observe that [tex](3x-5)(3x-5)[/tex] (Shown in the option A) matches with the form [tex](ax-b)(ax-b)[/tex], therefore, it will result in a perfect square trinomimal.

You can verify this by applyin Distributive property. Then:

[tex](3x-5)(3x-5)=\\=3^2x^2+(3x)(-5)+(3x)(-5)+5^2\\=9x^2-15x-15x+25\\=9x^2-30x+25[/tex]

The result is a perfect square trinomial.