Respuesta :

ANSWER

[tex]x = \: x = \pm \: \sqrt{2} i \: or \: x = \pm \: i[/tex]

EXPLANATION

[tex] {x}^{4} + 3 {x}^{2} + 2 = 0[/tex]

[tex]{ ({x}^{2}) }^{2} + 3( {x}^{2}) + 2 = 0[/tex]

Let

[tex]u = {x}^{2} [/tex]

Then the equation becomes:

[tex] {u}^{2} + 3u + 2 = 0[/tex]

[tex] {u}^{2} + 3u + 2 = 0[/tex]

[tex] {u}^{2} + 2u +u + 2 = 0[/tex]

Factor:

[tex]{u}(u + 2)+ 1(u + 2) = 0[/tex]

[tex](u + 1)(u + 2) = 0[/tex]

[tex]u = - 1[/tex]

or

[tex]u = - 2[/tex]

This implies that

[tex] {x}^{2} = - 1 \implies \: x = \pm \: i[/tex]

or

[tex] {x}^{2} = - 2 \implies \: x = \pm \: \sqrt{2} i[/tex]