When solving the equation log7 ⁡(x+1) + log7⁡x = log7⁡ 12 a student arrives at a verifiable solution and an extraneous solution. The value of the extraneous solution is


3


-4


-3


5.5

Respuesta :

Answer:

[tex]-4[/tex]

Step-by-step explanation:

The given logarithmic equation is:

[tex]\log_7(x+1)+\log_7x=\log_712[/tex]

Recall and apply product rule of logarithms.

[tex]\log_aM+\log_aN=\log_aMN[/tex]

We apply this property to the left side of the equation to get;

[tex]\log_7x(x+1)=\log_712[/tex]

We take the antilogarithm of both sides to get:

[tex]x(x+1)=12[/tex]

We expand to obtain:

[tex]x^2+x=12[/tex]

We rewrite in the standard quadratic form:

[tex]x^2+x-12=0[/tex]

We factor to obtain:

[tex](x-3)(x+4)=0[/tex]

Either [tex](x-3)=0[/tex] or [tex](x+4)=0[/tex]

Either [tex]x=3[/tex] or [tex]x=-4[/tex]

But the domain is[tex]x\:>\:0[/tex].

Hence [tex]x=-4[/tex] is an extraneous solution.