Becky81
contestada

What is the correlation coefficient r for the data set? Enter your answer to the nearest hundredth in the box. r =

x y

0 8

1 7.5

2 6

2 5.5

3 5.5

3 4

4 3

5 3

6 2.5

Respuesta :

Answer:

-0.00348

Step-by-step explanation:

x          y           xy        [tex]x^2[/tex]                        [tex]y^2[/tex]

0        8            0             0                      64

1        7.5         7.5           1                  56.25    

2        6          12            4                    36

2       5.5          11            4                   30.25

3       5.5          16.5        9                   30.25

3        4            12            9                     16

4       3             12           16                     9

5       3             15           25                   9

6      2.5         15            36                  6.25

Now [tex]\sum x=0+1+2+2+3+3+4+5+6=26[/tex]

[tex]\sum y=8+7.5+6+5.5+5.5+4+3+3+2.5=45[/tex]

[tex]\sum (xy)=0+7.5+12+11+16.5+12+12+15+15=101[/tex]

[tex]\sum x^2=0+1+4+4+9+9+16+25+36=104[/tex]

[tex]\sum y^2=64+56.25+36+30.25+30.25+16+9+9+6.25=257[/tex]

N = number of pairs of scores = 9

Formula :[tex]r =\frac{N\sum(xy)-\sum x \sum y}{(N \sum x^2 -(\sum x)^2)(N \sum y^2 -(\sum y)^2)}[/tex]

Substitute the values.

[tex]r =\frac{9(101)-(26 \times 45)}{(9 (104) -(26)^2)(9(257) -(45)^2)}[/tex]

[tex]r =-0.00348[/tex]

Hence the correlation coefficient is -0.00348

The value of Correlation coefficient is -0.00348.

What is a Correlation Coefficient?

A correlation coefficient denotes the strength of the relation between two variables of a function.

The formula for correlation coefficient is

[tex]\rm r = \dfrac{ N \sum (xy) - \sum x \sum y}{(N \sum x^2- (\sum x)^2)(N\sum y^2 - (\sum y)^2}[/tex]

The data is

x y

0 8

1 7.5

2 6

2 5.5

3 5.5

3 4

4 3

5 3

6 2.5

the value of ∑x = 26

∑y = 45

∑(xy) = 101

∑x² = 104

∑y² = 257

N =  Total frequency = 9

The value of r is obtained by substitution of value in the equation.

r = -0.00348

To know more about Correlation Coefficient

brainly.com/question/15577278

#SPJ5