Respuesta :

gmany

Answer:

[tex]\large\boxed{m=\dfrac{3w-2u-z}{u+w-z}}[/tex]

Step-by-step explanation:

Use the distributive property: a(b + c) = ab + ac

[tex]u(m+2)+w(m-3)=z(m-1)\\\\um+2u+wm-3w=zm-z\qquad\text{subtract}\ 2u\ \text{from both sides}\\\\um+wm-3w=zm-z-2u\qquad\text{add}\ 3w\ \text{to both sides}\\\\um+wm=zm+3w-2u-z\qquad\text{subtract}\ zm\ \text{from both sides}\\\\um+wm-zm=3w-2u-z\qquad\text{distributive}\\\\(u+w-z)m=3w-2u-z\qquad\text{divide both sides by}\ (u+w-z)\neq0\\\\m=\dfrac{3w-2u-z}{u+w-z}[/tex]