Which expression is equivalent to? Please help! Screenshots attached.

Answer:
[tex]\frac{\sqrt{5} }{x^{2} y}[/tex]
Step-by-step explanation:
That's a complex expression, let's simplify it, step by step, off the start, we'll simplify the 55/11:
[tex]\sqrt{ \frac{55 x^{7} y^{6} }{11 x^{11} y^{8} } } = \sqrt{ \frac{5 x^{7} y^{6} }{x^{11} y^{8} } }[/tex]
Then we'll simplify the x's and y's:
[tex]\sqrt{ \frac{5 x^{7} y^{6} }{x^{11} y^{8} } } = \sqrt{ \frac{5}{x^{4} y^{2} } }[/tex]
Let's split the square root in two and solve the bottom part:
[tex]\sqrt{ \frac{5}{x^{4} y^{2} } } = \frac{\sqrt{5} }{\sqrt{x^{4} y^{2}} } = \frac{\sqrt{5} }{x^{2} y}[/tex]
The solution is then:
[tex]\frac{\sqrt{5} }{x^{2} y}[/tex]
The expression which is equivalent to the given expression is:
[tex]\dfrac{\sqrt{5}}{x^2y}[/tex]
We are given a expression as:
[tex]\sqrt{\dfrac{55x^7y^6}{11x^{11}y^8}}[/tex]
Now we know that:
[tex]55=11\times 5[/tex]
Hence, we get:
[tex]\sqrt{\dfrac{55x^7y^6}{11x^{11}y^8}}=\sqrt{\dfrac{11\times 5x^7y^6}{11x^{11}y^8}[/tex]
which is written as:
[tex]\sqrt{\dfrac{5x^7y^6}{x^{11}y^8}}[/tex]
Also, we know that if n>m
Then
[tex]\dfrac{a^m}{a^n}=\dfrac{1}{a^{n-m}}[/tex]
Hence, we have the expression as:
[tex]=\sqrt{\dfrac{5}{x^{11-7}y^{8-6}}}\\\\\\=\sqrt{\dfrac{5}{x^4y^2}[/tex]
This could be given as:
[tex]=\dfrac{\sqrt{5}}{\sqrt{x^4}\sqrt{y^2}}[/tex]
Now, we know that:
[tex]\sqrt{x^4}=\sqrt{(x^2)^2}=x^2\\\\and\\\\\sqrt{y^2}=y[/tex]
Hence, we get that:
[tex]\sqrt{\dfrac{55x^7y^6}{11x^{11}y^8}}=\dfrac{\sqrt{5}}{x^2y}[/tex]