Respuesta :

Answer:

[tex]\frac{\sqrt[3]{5} }{3x}[/tex]

Step-by-step explanation:

Ok, let's do this step by step....

[tex]\sqrt[3]{\frac{10x^{5} }{54x^{8} } }[/tex]

Let's first simplify the x's:

[tex]\sqrt[3]{\frac{10}{54x^{3} } }[/tex]

Then we breakdown the 54 as 2 * 27 then simplify with the 10 above.

[tex]\sqrt[3]{\frac{10}{2 * 27x^{3} } } = \sqrt[3]{\frac{5}{27x^{3} } }[/tex]

Now, we can rewrite this as the following and solve the bottom part:

[tex]\frac{\sqrt[3]{5} }{\sqrt[3]{27x^{3} } } = \frac{\sqrt[3]{5} }{3 \sqrt[3]{x^{3} } } = \frac{\sqrt[3]{5} }{3x}[/tex]

The solution is

[tex]\frac{\sqrt[3]{5} }{3x}[/tex]