Which expression is equivalent to...? Assume... screenshots attached, please help!

Answer:
[tex]\frac{\sqrt[3]{5} }{3x}[/tex]
Step-by-step explanation:
Ok, let's do this step by step....
[tex]\sqrt[3]{\frac{10x^{5} }{54x^{8} } }[/tex]
Let's first simplify the x's:
[tex]\sqrt[3]{\frac{10}{54x^{3} } }[/tex]
Then we breakdown the 54 as 2 * 27 then simplify with the 10 above.
[tex]\sqrt[3]{\frac{10}{2 * 27x^{3} } } = \sqrt[3]{\frac{5}{27x^{3} } }[/tex]
Now, we can rewrite this as the following and solve the bottom part:
[tex]\frac{\sqrt[3]{5} }{\sqrt[3]{27x^{3} } } = \frac{\sqrt[3]{5} }{3 \sqrt[3]{x^{3} } } = \frac{\sqrt[3]{5} }{3x}[/tex]
The solution is
[tex]\frac{\sqrt[3]{5} }{3x}[/tex]