Respuesta :

Answer:

option D

[tex]\frac{2}{(k+2)}[/tex]

Explanation:

Given in the question an expression

[tex]\frac{4k+2}{k^{2}-4}.\frac{k-2}{2k+1}[/tex]

Step 1

Use Algebraic Formula

a² - b² = (a-b)(a+b)

k² - 4 = k² - (2)² = (k-2)(k+2)

[tex]\frac{4k+2}{(k-2)(k+2)}.\frac{k-2}{2k+1}[/tex]

Step 2

Cancel(k-2) from both numerator and denometor

[tex]\frac{4k+2}{(k+2)}.\frac{1}{2k+1}[/tex]

Step 3

Use Distributive Law

a(b+c) = (ab + ac)

4k + 2 = 2(2k+1)

[tex]\frac{2(2k+1)}{(k+2)}.\frac{1}{2k+1}[/tex]

Step 4

Cancel(2k+1) from both numerator and denometor

[tex]\frac{2}{(k+2)}.\frac{1}{1}[/tex]

Step 5

Simplified form is

[tex]\frac{2}{(k+2)}[/tex]