Respuesta :

Answer:

b)0, yes

Step-by-step explanation:

Given:

Vectors (4,8) . (6,-3)

Finding inner product of vectors:

= 4x6 + 8x-3

=24-24

=0

Now to check the angle between them using formula a.b=|a|.|b|cosθ

|a|= [tex]\sqrt{4^{2} +8^{2} } \\\sqrt{16+64}[/tex]

   =8.9

|b|=[tex]\sqrt{6^{2} +(-3)^{2} } \\\sqrt{36+9}[/tex]

   =6.7

Putting values of a.b=0 and |a|=8.9, |b|=6.7 in a.b=|a|.|b|cosθ we get,

0= 8.9(6.7)cosθ

cosθ =0

θ=90 degrees

Hence the two vectors are perpendicular !