Respuesta :
Answer:
Step-by-step explanation:Let us find points of intersection of line
3
x
+
4
y
−
k
=
0
and circle
x
2
+
y
2
=
16
. We can do this by putting value of
y
from first equation i.e.
y
=
k
−
3
x
4
and we get
x
2
+
(
k
−
3
x
)
2
16
=
16
or
16
x
2
+
k
2
+
9
x
2
−
6
k
x
=
256
i.e.
25
x
2
−
6
k
x
+
k
2
−
256
=
0
This would give two values of
x
and corresponding two values of
y
i.e. two points. But tangent cuts the circle in only at one point. This will be so when discriminant is zero i.e.
(
−
6
k
)
2
−
4
⋅
25
⋅
(
k
2
−
256
)
=
0
or
−
64
k
2
+
25600
=
0
or
k
=
±
20
graph{(x^2+y^2-16)(3x+4y-20)(3x+4y+20)=0 [-10, 10, -5, 5]}
Answer:
-1, 7
Step-by-step explanation:
Equation of the circle:
x² + (y − k)² = 16
When the circle intersects y = 3:
x² + (3 − k)² = 16
x² + 9 − 6k + k² = 16
x² = 7 + 6k − k²
x = ±√(7 + 6k − k²)
For the circle to be tangent to the line, it can only intersect at one point. If x has only one value, then:
√(7 + 6k − k²) = -√(7 + 6k − k²)
2√(7 + 6k − k²) = 0
7 + 6k − k² = 0
k² − 6k − 7 = 0
(k − 7) (k + 1) = 0
k = -1, 7
The two values of k are -1 and 7.