Respuesta :

ANSWER

[tex]B. \: x = \frac{7}{6} [/tex]

EXPLANATION

The given absolute value equation is

[tex] |x + 3| = 7x - 4[/tex]

This implies that, either

[tex] x + 3= 7x - 4[/tex]

Or

[tex] - (x + 3)= 7x - 4[/tex]

[tex] - x - 3 = 7x - 4[/tex]

Group similar terms;

[tex]3 + 4 = 7x - x[/tex]

or

[tex] - 3 + 4 = 7x + x[/tex]

Simplify:

[tex]7 = 6x[/tex]

or

[tex]1 = 8x[/tex]

Solve for x.

[tex] x = \frac{7}{6} \: or \: x = \frac{1}{8} [/tex]

Check for extraneous solutions.

[tex]| \frac{7}{6} + 3| = 7 \times \frac{7}{6} - 4[/tex]

[tex] \frac{25}{6} = \frac{25}{6} [/tex]

Also,

[tex]| \frac{1}{8} + 3| = 7 \times \frac{1}{8} - 4[/tex]

[tex] \frac{25}{8} = - \frac{25}{8} [/tex]

This is an extraneous solution.

The only solution is:

[tex]x = \frac{7}{6} [/tex]

Answer:

B. x=7/6

Step-by-step explanation:

A P E X