Respuesta :

Answer:

-10 and -2 are the zeroes

Step-by-step explanation:

Factor: x^2 + 12x + 20

(x + 10)(x+2)

Set each factor to 0 and solve for x

x + 10 = 0 | x = -10

x + 2 = 0 | x = -2

The zeros are the values for x

Nayefx

Answer:

-10 and -2

Step-by-step explanation:

to find Zeros substitute f(x) to 0

[tex] \displaystyle {x}^{2} + 12x + 20 = 0[/tex]

rewrite the middle term as 2x+10x:

[tex] \displaystyle {x}^{2} +2x + 10x+ 20 = 0[/tex]

factor out x:

[tex] \displaystyle x ({x}^{} +2)+ 10x+ 20 = 0[/tex]

factor out 10:

[tex] \displaystyle x ({x}^{} +2)+ 10(x+ 2) = 0[/tex]

group:

[tex] \displaystyle (x + 10)(x+ 2) = 0[/tex]

by Zero product property we obtain:

[tex] \displaystyle \begin{cases} x + 10 = 0\\ x+ 2 = 0\end{cases} [/tex]

cancel 10 from the first equation 2 from the second:

[tex] \displaystyle \begin{cases} x = - 10\\ x = - 2\end{cases} [/tex]

hence, the Zeros of the function are -10 and -2