Respuesta :

ANSWER

[tex]x = \frac{\pi}{2} , \frac{7\pi}{6} , \frac{3\pi}{2} , \frac{11\pi}{6} [/tex]

EXPLANATION

The given trigonometric equation is

[tex] \cos(x) + 2 \cos(x) \sin(x) = 0[/tex]

We factor cos(x) to get:

[tex] \cos(x) (1 + 2 \sin(x) ) = 0[/tex]

Apply the zero product property to obtain:

[tex] \cos(x) = 0 \: or \: 1 + 2 \sin(x) = 0[/tex]

[tex] \cos(x) = 0 \: or \: \sin(x) = - \frac{1}{2} [/tex]

Using the unit circle,

[tex] \cos(x) = 0[/tex]

when

[tex]x = \frac{\pi}{2} [/tex]

and

[tex]x = \frac{3\pi}{2} [/tex]

We know

[tex] \sin(y) = \frac{1}{2} [/tex]

when

[tex]y= \frac{\pi}{6} [/tex]

The sine function is negative in the third and fourth quadrants.

[tex]x = \pi + \frac{\pi}{6} = \frac{7\pi}{6} [/tex]

[tex]x = 2\pi - \frac{\pi}{6} = \frac{11\pi}{6} [/tex]

Hence the solutions are:

[tex]x = \frac{\pi}{2} , \frac{7\pi}{6} , \frac{3\pi}{2} , \frac{11\pi}{6} [/tex]