Respuesta :
Answer:
5/3 and y -9 = 5/3(x - 2)
5/3 and y - 4 = 5/3(x + 1)
Step-by-step explanation:
To write the equation of a line, calculate the slope between points (2,9) and (-1,4). After, substitute the slope and a point into the point slope form.
[tex]m = \frac{y_2-y_1}{x_2-x_1} = \frac{9-4}{2--1}= \frac{5}{3}[/tex]
Substitute m = 5/3 and the point (2,9) into the point slope form.
[tex]y - y_1 = m(x-x_1)\\y -9 = \frac{5}{3}(x-2)[/tex]
You could choose to use the other point (-1,4). Repeat the same process substituting m = 5/3 and the point (-1,4).
[tex]y - y_1 = m(x-x_1)\\y -4 = \frac{5}{3}(x+1)[/tex]
Answer:
[tex]\large\boxed{m=\dfrac{5}{3}}\\\boxed{y-9=\dfrac{5}{3}(x-2)}\\\boxed{y-4=\dfrac{5}{3}(x+1)}[/tex]
Step-by-step explanation:
The point-slope form of an equation of a line:
[tex]y-y_1=m(x-x_1)[/tex]
m - slope
The formula of a slope:
[tex]m=\dfrac{y_2-y_1}{x_2-x_1}[/tex]
We have the points C(2, 9) and D(-1, 4). Substitute:
[tex]m=\dfrac{4-9}{-1-2}=\dfrac{-5}{-3}=\dfrac{5}{3}[/tex]
For the point C(2, 9):
[tex]y-9=\dfrac{5}{3}(x-2)[/tex]
For the point D(-1, 4):
[tex]y-4=\dfrac{5}{3}(x-(-1))\\\\y-4=\dfrac{5}{3}(x+1)[/tex]