[tex]\sqrt[n]{x}[/tex]

Answer:
option C
[tex]log_{w}4(x^{2}-6)}-\frac{1}{3} ({x^{2}+8)}[/tex]
Step-by-step explanation:
Given in the question an expression
[tex]log_{w}\frac{(x^{2}-6)^4}{\sqrt[3]{x^{2}+8}}[/tex]
Step1
Apply logarithm subtraction rule:
[tex]log_{w}\frac{m}{n}=log_{w}m-n[/tex]
[tex]log_{w}(x^{2}-6)^4}-{\sqrt[3]{x^{2}+8}[/tex]
Step2
Apply logarithm power rule
[tex]log_{w}x^{n}=nlog_{w}x[/tex]
[tex]log_{w}4(x^{2}-6)}-\frac{1}{3} ({x^{2}+8)}[/tex]
as
[tex]\sqrt[n]{x}=(x)^\frac{1}{n}[/tex]
Answer:
C. [tex]4\log_w(x^2-6)-\frac{1}{3} \log_w(x^2+8)[/tex]
Step-by-step explanation:
The given logarithmic expression is
[tex]\log_w\frac{(x^2-6)^4}{\sqrt[3]{x^2+8} }[/tex]
Recall and use the quotient law of logarithms;
[tex]\log_a(\frac{m}{n} )=\log_a(m )-\log_a(n)[/tex]
[tex]=\log_w(x^2-6)^4-\log_w\sqrt[3]{x^2+8} [/tex]
[tex]=\log_w(x^2-6)^4-\log_w(x^2+8)^{\frac{1}{3}} [/tex]
Recall and use the power rule of logarithms:[tex]\log_aM^n=n\log_aM[/tex]
[tex]=4\log_w(x^2-6)-\frac{1}{3} \log_w(x^2+8)[/tex]
The correct choice is C.